
Chapter 6 Methods

1

Objectives

▪ To define methods with formal parameters (§6.2).

▪ To invoke methods with actual parameters (i.e., arguments) (§6.2).

▪ To define methods with a return value (§6.3).

▪ To define methods without a return value (§6.4).

▪ To pass arguments by value (§6.5).

▪ To develop reusable code that is modular, easy to read, easy to debug, and
easy to maintain (§6.6).

▪ To write a method that converts hexadecimals to decimals (§6.7).

▪ To use method overloading and understand ambiguous overloading (§6.8).

▪ To determine the scope of variables (§6.9).

▪ To apply the concept of method abstraction in software development
(§6.10).

▪ To design and implement methods using stepwise refinement (§6.10).

2

Defining Methods

3

Defining Methods

4

A method is a collection of statements that are

grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

Define a method Invoke a method

int z = max(x, y);

actual parameters

(arguments)

Defining Methods

5

A method is a collection of statements that are

grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Method Signature

6

Method signature is the combination of the method name and the

parameter list.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Formal Parameters

7

The variables defined in the method header are known as

formal parameters.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Actual Parameters

8

When a method is invoked, you pass a value to the parameter. This

value is referred to as actual parameter or argument.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Return Value Type

9

A method may return a value. The returnValueType is the data type

of the value the method returns. If the method does not return a

value, the returnValueType is the keyword void. For example, the

returnValueType in the main method is void.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Calling Methods

10

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

pass the value of i
pass the value of j

CAUTION

A return statement is required for a value-returning method. The
method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible that
this method does not return any value.

11

To fix this problem, delete if (n < 0) in (a), so that the compiler will
see a return statement to be reached regardless of how the if
statement is evaluated.

 public static int sign(int n) {
 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else if (n < 0)

 return –1;

}

(a)

Should be

(b)

public static int sign(int n) {

 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else

 return –1;

}

Reuse Methods from Other Classes

NOTE: One of the benefits of methods is for reuse. The max
method can be invoked from any class besides TestMax. If
you create a new class Test, you can invoke the static method
max using ClassName.methodName (e.g., TestMax.max).

12

Call Stacks

13

Each time a method is invoked, the system creates an activation record (also called

an activation frame) that stores parameters and variables for the method and places

the activation record in an area of memory known as a call stack. A call stack is

also known as an execution stack, runtime stack, or machine stack, and it is often

shortened to just “the stack.” When a method calls another method, the caller’s

activation record is kept intact, and a new activation record is created for the new

method called. When a method finishes its work and returns to its caller, its

activation record is removed from the call stack.

Trace Call Stack

The main method

is invoked.

i: 5

14

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

i is declared and initialized

Trace Call Stack

The main method

is invoked.

j: 2

i: 5

15

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

j is declared and initialized

Trace Call Stack

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

16

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Declare k

Trace Call Stack

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

17

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Invoke max(i, j)

Trace Call Stack

The max method is

invoked.

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

18

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

pass the values of i and j to num1

and num2

Trace Call Stack

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

19

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Declare result

Trace Call Stack

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

20

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

(num1 > num2) is true

Trace Call Stack

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

21

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Assign num1 to result

Trace Call Stack

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:5
j: 2

i: 5

22

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Return result and assign it to k

Trace Call Stack

The main method

is invoked.

Space required for the

main method

 k:5
j: 2

i: 5

23

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Execute print statement

void Method Example

24

Passing Parameters

25

Pass by Value

26

When you invoke a method with an

argument, the value of the argument is

passed to the parameter. This is referred to

as pass-by-value. If the argument is a

variable rather than a literal value, the value

of the variable is passed to the parameter.

The variable is not affected, regardless of

the changes made to the parameter inside

the method

Pass by Value

27

Pass by Value

28

Pass by Value, cont.

29

Overloading Methods

• Overloading methods enables you to define the methods with the same
name as long as their signatures are different.

• The max method that was used earlier works only with the int data type.
But what if you need to determine which of two floating-point numbers
has the maximum value? The solution is to create another method with
the same name but different parameters, as shown in the following
code:

 public static double max(double num1, double num2) {

 if (num1 > num2)

 return num1;

 else

 return num2;

 }

30

Ambiguous Invocation

• The Java compiler determines which method to use based on the method
signature.

• Sometimes there may be two or more possible matches for an invocation of
a method, but the compiler cannot determine the most specific match. This
is referred to as ambiguous invocation. Ambiguous invocation is a compile
error.

31

Ambiguous Invocation

32

Scope of Local Variables

A local variable: a variable defined inside a
method.

Scope: the part of the program where the
variable can be referenced.

The scope of a local variable starts from its
declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

33

Scope of Local Variables, cont.

You can declare a local variable with the
same name multiple times in different non-
nesting blocks in a method, but you cannot
declare a local variable twice in nested
blocks.

34

Scope of Local Variables, cont.

A variable declared in the initial action part of a for loop
header has its scope in the entire loop. But a variable
declared inside a for loop body has its scope limited in the
loop body from its declaration and to the end of the block
that contains the variable.

35

public static void method1() {

 .

 .

 for (int i = 1; i < 10; i++) {

 .

 .

 int j;

 .

 .

 .

 }

}

The scope of j

The scope of i

Scope of Local Variables, cont.

36

public static void method1() {

 int x = 1;

 int y = 1;

 for (int i = 1; i < 10; i++) {

 x += i;

 }

 for (int i = 1; i < 10; i++) {

 y += i;

 }

}

It is fine to declare i in two

non-nesting blocks

 public static void method2() {

 int i = 1;

 int sum = 0;

 for (int i = 1; i < 10; i++) {

 sum += i;

 }

 }

It is wrong to declare i in

two nesting blocks

Scope of Local Variables, cont.

// Fine with no errors

public static void correctMethod() {

 int x = 1;

 int y = 1;

 // i is declared

 for (int i = 1; i < 10; i++) {

 x += i;

 }

 // i is declared again

 for (int i = 1; i < 10; i++) {

 y += i;

 }

}

37

Scope of Local Variables, cont.

38

// With errors

public static void incorrectMethod() {

 int x = 1;

 int y = 1;

 for (int i = 1; i < 10; i++) {

 int x = 0;

 x += i;

 }

}

Method Abstraction

You can think of the method body as a black box that contains the detailed
implementation for the method.

39

Method Header

Method body
Black Box

Optional arguments

for Input
Optional return

value

Benefits of Methods

40

• Write a method once and reuse it anywhere.

• Information hiding. Hide the implementation

from the user.

• Reduce complexity.

Assignment

By use of Methods, write Java programs to find out the

area of;

1. Circle

2. Triangle

The program should prompt the user to enter for example

the Length, Height and or Radius then goes ahead to

display the area of the object respectively.

41

Case Study: Generating Random Characters,
cont.

Now let us consider how to generate a random lowercase letter. The Unicode
for lowercase letters are consecutive integers starting from the Unicode for
'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a' is

(int)'a'

So, a random integer between (int)'a' and (int)'z' is
(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

42

Case Study: Generating Random Characters,
cont.

As discussed in Chapter 2, all numeric operators can be applied to the char
operands. The char operand is cast into a number if the other operand is a
number or a character. So, the preceding expression can be simplified as
follows:

'a' + Math.random() * ('z' - 'a' + 1)

So a random lowercase letter is
(char)('a' + Math.random() * ('z' - 'a' + 1))

43

Case Study: Generating Random Characters,
cont.

To generalize the foregoing discussion, a random
character between any two characters ch1 and ch2 with
ch1 < ch2 can be generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

44

The RandomCharacter Class
// RandomCharacter.java: Generate random characters

public class RandomCharacter {

 /** Generate a random character between ch1 and ch2 */

 public static char getRandomCharacter(char ch1, char ch2) {

 return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));

 }

 /** Generate a random lowercase letter */

 public static char getRandomLowerCaseLetter() {

 return getRandomCharacter('a', 'z');

 }

 /** Generate a random uppercase letter */

 public static char getRandomUpperCaseLetter() {

 return getRandomCharacter('A', 'Z');

 }

 /** Generate a random digit character */

 public static char getRandomDigitCharacter() {

 return getRandomCharacter('0', '9');

 }

 /** Generate a random character */

 public static char getRandomCharacter() {

 return getRandomCharacter('\u0000', '\uFFFF');

 }

}

45

The TestRandomCharacter Class

46

	Slide 1: Chapter 6 Methods
	Slide 2: Objectives
	Slide 3: Defining Methods
	Slide 4: Defining Methods
	Slide 5: Defining Methods
	Slide 6: Method Signature
	Slide 7: Formal Parameters
	Slide 8: Actual Parameters
	Slide 9: Return Value Type
	Slide 10: Calling Methods
	Slide 11: CAUTION
	Slide 12: Reuse Methods from Other Classes
	Slide 13: Call Stacks
	Slide 14: Trace Call Stack
	Slide 15: Trace Call Stack
	Slide 16: Trace Call Stack
	Slide 17: Trace Call Stack
	Slide 18: Trace Call Stack
	Slide 19: Trace Call Stack
	Slide 20: Trace Call Stack
	Slide 21: Trace Call Stack
	Slide 22: Trace Call Stack
	Slide 23: Trace Call Stack
	Slide 24: void Method Example
	Slide 25: Passing Parameters
	Slide 26: Pass by Value
	Slide 27: Pass by Value
	Slide 28: Pass by Value
	Slide 29: Pass by Value, cont.
	Slide 30: Overloading Methods
	Slide 31: Ambiguous Invocation
	Slide 32: Ambiguous Invocation
	Slide 33: Scope of Local Variables
	Slide 34: Scope of Local Variables, cont.
	Slide 35: Scope of Local Variables, cont.
	Slide 36: Scope of Local Variables, cont.
	Slide 37: Scope of Local Variables, cont.
	Slide 38: Scope of Local Variables, cont.
	Slide 39: Method Abstraction
	Slide 40: Benefits of Methods
	Slide 41: Assignment
	Slide 42: Case Study: Generating Random Characters, cont.
	Slide 43: Case Study: Generating Random Characters, cont.
	Slide 44: Case Study: Generating Random Characters, cont.
	Slide 45: The RandomCharacter Class
	Slide 46: The TestRandomCharacter Class

